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Abstract
In many real world data, time series are often hi-
erarchically organized. Based on features such as
products or geography, time series can be aggre-
gated and disaggregated at several different lev-
els. The so-called ‘hierarchical time series’ are
often forecast using simple top-town or bottom-
up approaches. In this paper, we build a proba-
bilistic model that involves dynamically evolving
latent variables to capture the proportion changes
in time series at each hierarchy. We derive the
variational Bayesian expectation maximisation
(VBEM) algorithm under the new model. In
our algorithm, we implement the posterior in-
ference in a sequential manner that significantly
decreases computational overhead common in
large hierarchical time series data. Furthermore,
unlike the standard EM algorithm that provides
point estimates of model parameters, our algo-
rithm yields the distribution over the model pa-
rameters, which give us an insight to which sub-
set of features yields the proportion changes of
the time series. Simulation results show that our
method significantly outperforms other methods
in prediction.

1. Introduction
Time series in business and economics are often organized
in a hierarchical structure based on dimensions such as
products or regions. Forecasting the hierarchical time se-
ries is an important task in a number of industrial sectors
(Sbrana & Silvestrini, 2013; Fischer et al., 2013; Kalch-
schmidt et al., 2006; Zotteri & Kalchschmidt, 2007; Flied-
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ner, 1999). For instance, companies that offer a broad range
of items or services to their customers need to plan their
future supply process in order to minimize potential costs
(e.g., inventory costs) (Kerkkaenen et al., 2009). A similar
problem occurs in governmental budgeting that needs to
be optimized throughout hierarchically organized depart-
ments. As an example, military budgeting in the context of
hierarchical time series forecasting can be found in (Moon
et al., 2013; 2012).

1.1. Motivation

The main challenge in forecasting hierarchical time series
is that various components at different levels of a hierar-
chy can interact in a complex manner: small changes at a
given level of hierarchy can largely affect the time series
at other levels. Furthermore, forecasting each times series
individually can be time consuming and computationally
intensive for large datasets. Consequently, there is a dire
need for rapid, efficient, and automated forecasting meth-
ods that exploit the hierarchy in the time series to obtain
better prediction performance.

1.2. Prior Work

Different approaches to forecasting hierarchical time series
data are summarized in (Athanasopoulos et al., 2009; Hyn-
dman et al., 2011) and can be categorized into three main
categories: (1) top-down methods; (2) bottom-up methods;
and (3) alternative statistical methods. In the following, we
review each of these categories in detail.

1) Top-down (TD) approaches: distribute the top-level
forecasts down the hierarchy using the historical propor-
tions of the data (Gross & Sohl, 1990; Fliedner, 1999). As
a result, only the top level forecast of the time series is
needed. Examples of proportions are: (1) average histor-
ical proportions that are the average of the historical pro-
portions of the bottom level series relative to the top level
series over a certain period; and (2) proportions of the his-
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torical averages that are average historical values of the
bottom level series relative to the average values at the top
level series. However, since these methods rely on histori-
cal and static proportion changes, they are unable to capture
temporal dynamics in individual series. More recent work
uses the so-called forecasted proportion (FP), which is the
proportions of the top-level forecasts relative to lower-level
forecasts. Unfortunately, this approach produces biased re-
vised forecasts even if base forecasts are unbiased (Athana-
sopoulos et al., 2009).

2) Bottom-up (BU) approaches: aggregate upper level time
series from the bottom level time series using a summation
operation based on the hierarchy of the data. These meth-
ods require forecasting the bottom level series only and do
not lose any information due to aggregation. While these
approaches are the most commonly used to hierarchical
forecasting (Dangerfield & Morris, 1992; Zellner & Tobias,
2000), modeling the bottom level series is quite challenging
due to the large amount of inherent noise in the individual
time series.

3) Alternative statistical approaches: entail forecasting
each series at an intermediate level of the hierarchy, then
aggregating those at higher levels and disaggregating those
at lower levels. This approach does not take into account
inherent correlations of the hierarchy. For example, the
“optimal combination approach” introduced in (Hyndman
et al., 2011) entails individually forecasting all time series
at all levels of the hierarchy, then revising the entire time
series using a regression model that is fit by minimizing the
variance among all revised forecasts. This method, which
we denote by Optimal, finds a linear weight vector that op-
timally revises individual forecasts in the entire hierarchy
(i.e. optimal in minimum variance sense). This method
produces unbiased forecasts which are consistent through-
out the entire hierarchy. However, it is computationally ex-
pensive compared to the other methods introduced so far
because it requires individually forecasting all the time se-
ries at all levels of the hierarchy. Furthermore, the obtained
linear weight vector can overfit the data as it happens fre-
quently in the linear regression setting.

1.3. Contribution

In this paper, we introduce a hierarchical Bayesian dy-
namic proportions model (DPM) to hierarchical forecast-
ing. Our method entails forecasting the least noisy top-level
time series; and then sequentially disaggregating the pre-
dicted time series from the top to the bottom, i.e., the top
level forecast is disaggregated into a second level forecast,
which in turn is used to disaggregate the third level, etc.,
based on the latent dynamical systems that control propor-
tion changes in time series.

We demonstrate that DPM captures many of the proper-

ties exhibited by hierarchical time series; however, its non-
Gaussian observation model leads to an analytically in-
tractable inference. As a result, we derive a computation-
ally efficient inference algorithm for DPM using the varia-
tional Bayesian expectation maximisation (VBEM) frame-
work (Bishop, 2006). In the VBE-step, we compute the
forward/backward messages at each time step to obtain the
posterior over the latent states in a computationally efficient
way. Further, we impose the automatic relevance determi-
nation (ARD) prior on the dynamics matrix in the latent dy-
namical system and infer the “effective” dimensions from
the posterior over the dynamics matrix in the VBM-step.
We demostrate the effectiveness of our technique on simu-
lated data.

The paper is organized as follows. In Sec. 2, we first
introduce our hierarchical Bayesian dynamic proportions
model. In Sec. 3 and 4, we derive the VBEM algorithm
for the proposed model. In Sec. 5, we present simulation
results and finally conclude in Sec. 6.

2. Hierarchical Bayesian dynamic
proportions model

2.1. Observation model

Suppose an observation of the top level at time t denoted
by nt is disaggregated into k different categories. We
model the observations at the subsequent level as multi-
nomial random variables, yt = [y1

t , · · · , ykt ]T such that
nt =

∑k
j=1 y

j
t . Conditioned on latent states zt ∈ Rk,

the likelihood of the observed data is given by

p(yt|zt, nt) = Mu(π(zt)|nt), (1)

=
nt!

y1
t ! · · · ykt !

k∏
j=1

[πj(zt)]
yjt , (2)

where each proportion is given by the softmax function as
follows:

πj(zt) =
exp(zjt )∑k
j=1 exp(zjt )

. (3)

2.2. Latent states

The latent states in the HB-DP model evolve linearly with
time:

p(zt|zt−1) = N (Azt−1,Σ), (4)

where A ∈ Rk×k is the dynamics matrix. The evolution
noise covariance is denoted by Σ ∈ Rk×k Therefore the
parameters in our model are θ = {A,Σ}.



Submission and Formatting Instructions for ICML 2014

2.3. Priors on parameters

Typically, it is expected that future proportion of a given
category would depend on the current propotions of few
related categories. To capture this, we impose the ARD
prior on each row aj of the dynamic matrix A :

p(aj |α) = N (aj |0, diag(α1, · · · , αk)−1). (5)

This prior induces many zeros (i.e., sparse) in the estimate
of A, which tells us which elements inA contribute dynam-
ical proportion changes. If we share the hyperparameters α
across rows the resulting prior on the dynamic matrix A is
given by

p(A|α) =

k∏
j=1

N (aj |0, diag(α)−1). (6)

This prior on A could be less flexible than an independent
ARD prior on each row of A using different precisions for
each row, i.e., aj ∼ N (0, diag(αj)

−1). Our choice for the
shared precisions across rows of A is based on that: (1)
having too many hyperparameters can be harmful due to
over-fitting; (2) our interest is not finding maximally sparse
A, but finding which dimension in the latent variables con-
tributes proportion changes in the time series.

We impose the Gaussian prior on the initial latent states:

p(z0) = N (z0|µ0,Σ0). (7)

In total, the hyperparameters are φ = {α,µ0,Σ0}.

2.4. Approximate posterior

We assume the approximate posterior over the parameter θ
and latent variables, q(θ, z0:T ), is factorized in the follow-
ing way:

p(θ, z0:T |y1:T ) ≈ q(θ, z0:T ) = qθ(θ)qx(z0:T ). (8)

where the approximate posterior over the parameters is fur-
ther factorized as

qθ(θ) = qA|Σ(A|Σ)qΣ(Σ), (9)
= qA|Σ(A|Σ)δΣ(Σ− ΣML) (10)

We approximate the posterior where Σ coincides the ML
estimate of Σ for simplicity.

2.5. Variational lower bound

Using the approximate posterior, we can lower bound the
marginal likelihood of the observations by the KL diver-
gence between the approximate posterior q(θ, z0:T ) and the
true posterior p(θ, z0:T ,y1:T ):

log p(y1:T ) ≥
∫
dθ dz0:T q(θ, z0:T ) log

p(θ, z0:T ,y1:T )

q(θ, z0:T )
.

We maximize the lower bound by iterating the varia-
tional Bayesian expectation maximization (VBEM) algo-
rithm (Beal, 2003), which consists of : (1) variational
Bayesian expectation (VBE) step for computing qz(z0:T ):

qz(z0:T ) ∝ exp

[∫
dθqθ(θ) log p(z0:T ,y1:T |θ)

]
, (11)

and (2) variational Bayesian maximization (VBM) step for
computing qθ(θ):

qθ(θ) ∝ p(θ) exp

[∫
dz0:T qz0:T

(z0:T ) log p(z0:T ,y1:T |θ)
]
. (12)

In each iteration, we also update the hyperparameters
by computing the derivatives of the lower bound given
q(θ, z0:T ) with respect to each hyperparameter.

3. Variational Bayesian EM
3.1. VBE step

In VBE step, we compute

log qz(z0:T ) = Eqθ(θ) log p(z0:T ,y1:T |θ) + const, (13)

where the integrand in eq. 13, the so-called complete-data
log likelihood, is written by

T∑
t=1

{log p(yt|zt) + log p(zt|zt−1, θ)}, (14)

which tells us that the log posterior over latent variables is
quadratic in each zt. This enables us to use the sequential
forward/backward message passing algorithm (see Fig. 1)
to compute the posterior over latent variables in the follow-
ing.

Forward message (filtering)
The forward message at each time is given by

α(zt) , p(zt|y1:t),

= µft−>zt(zt),

=

∫
ft(zt−1, zt)α(zt−1)dzt−1,

∝ p(yt|zt)×∫
exp

(
Eqθ(θ) log p(zt|zt−1)

)
α(zt−1)dzt−1,

where we approximate α(zt−1) to a Gaussian:

α(zt−1) ≈ N (µt−1, Vt−1), (15)

and assume α(z0) = N (µ0,Σ0). After some algebraic
manipulation, the forward message is given by

α(zt) ≈ p(yt|zt)N (zt|µ̃t, Ṽt), (16)
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Figure 1. Factor graph representation of dynamic proportion
model. A: A fragment of the factor graph showing both latent and
observed variables. B: A simplified factor graph by absorbing the
emission probabilities into the transition probability factors.

where the mean and covariance are given by

Ṽ −1
t = Σ + 〈A〉Vt−1〈A〉>, (17)
µ̃t = 〈A〉µt−1, (18)

where the mean of A w.r.t. qθ(θ) is denoted by 〈A〉.

Due to the multinomial likelihood term, eq. 16 is not Gaus-
sian in zt. We approximate α(zt) as a Gaussian by finding
the first two moments of eq. 16. The first derivative expres-
sion gives us the mean update

µt = µ̃t + Ṽt[yt − ntπ(µt)], (19)

where µt appears in both sides. Iterative methods, e.g.,
Newton’s method, are typically used to solve this equation.
(See appendix A for details). The second derivative expres-
sion gives us the covariance update

V −1
t = Wt + Ṽ −1

t , (20)

where Wt = nt[diag(π(µt)) − π(µt)π(µt)
T ]. The two

updates above yield α(zt) ≈ N (µt, Vt).

Backward message (smoothing)
The backward message at each time is given by

β(zt) , p(yt+1:T |zt),
= µft+1−>zt(zt),

=

∫
ft+1(zt, zt+1)β(zt+1)dzt+1,

∝
∫
p(yt+1|zt+1) exp

(
Eqθ(θ) log p(zt+1|zt)

)
β(zt+1)dzt+1, (21)

where we assume β(zt+1) ≈ N (ηt+1,Γt+1). The initial
values for (ηT ,ΓT ) are the mean and covariance (µT , VT )

of the last forward message. Unfortunately, the integral
in eq. 21 is analytically intractable due to the multinomial
likelihood term. Here, we approximate the integrand of
the above equation as a joint Gaussian in [zt zt+1]T , and
extract those parts that correspond to zt to approximately
compute the integral.

The first derivative of the logarithm of the integrand de-
noted by Φ(zt, zt+1) is given by

∂Φ(zt, zt+1)

∂[zt zt+1]
=

[
−〈A〉>Σ−1〈A〉 〈A〉>Σ−1

Σ−1〈A〉 −(Σ−1 + Γ−1
t+1)

] [
zt

zt+1

]
+

[
0

yt+1 − nt+1π(zt+1) + Γ−1
t+1ηt+1

]
,

which we use to compute the joint mode of [zt zt+1]T .

The second derivative of Φ(zt, zt+1) is given by

∂2Φ(zt, zt+1)

∂[zt zt+1]2
= −

[
〈A〉>Σ−1〈A〉 −〈A〉>Σ−1

−Σ−1〈A〉 Σ−1 +Wt+1 + Γ−1
t+1

]
. (22)

where we denote W (ẑt+1) by Wt+1. Using Schur comple-
ment, we obtain the covariance Γt by

Γ−1
t = 〈A〉>Σ−1〈A〉 − 〈A〉>Σ−1Γ∗t+1Σ−1〈A〉.

where Γ∗−1
t+1 = Σ−1 + Γ−1

t+1 +Wt+1.

Computing posterior marginals

Using the forward and backward messages, we can com-
pute the posterior marginals for the latent variables. First,
we define

γ(zt) , p(zt|y1:T ),

∝ p(zt|y1:t)p(yt+1:T |zt) = α(zt)β(zt),

∝ N (zt|µ̂t, V̂t), (23)

where the mean and covariance are given by

µ̂t = V̂t(V
−1
t µt + Γ−1

t ηt), (24)
V̂t = (V −1

t + Γ−1
t )−1. (25)

Second, we also define the joint posterior between neigh-
boring (in time) latent variables

ξ(zt−1, zt) , p(zt−1, zt|y1:T ),

∝ α(zt−1)p(yt|zt)
exp

(
Eqθ(θ) log p(zt|zt−1)

)
β(zt).

We approximate the joint distribution over zt−1 and zt
to a Gaussian. The second derivative of the logarithm of
ξ(zt−1, zt) is given by

−
[
〈A〉>Σ−1〈A〉+ V −1

t−1 −〈A〉>Σ−1

−Σ−1〈A〉 Γ∗−1
t

]
, (26)

where we denote W (µ̂t) by Wt. Using the Schur comple-
ment, we can obtain the cross covariance of (zt−1, zt).
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3.2. VBM step

In VBM step, we compute qθ(θ) by extracting all the terms
in log p(z0:T ,y1:T |θ) that depend on θ and then taking the
expectation over z0:T :

log qθ(θ) = Eqz(z0:T ) [log p(z0:T |θ)] + log p(θ) + const.

where the first term on RHS is given by

− 1
2

k∑
i=1

k∑
j=1

σ2
ij(a

T
i WAaj − 2aTi SAej) (27)

where σij is the i, jth element of ML estimate1 of the latent
noise covariance Σ, and ej is the unit vector where the jth
element is 1. The sufficient statistics of latent variables are
denoted by WA and SA:

WA =

T∑
t=1

< zt−1z
T
t−1 >, SA =

T∑
t=1

< zt−1z
T
t > .

Clearly, the joint posterior over the rows of A does not fac-
torize. However, to avoid computational burden finding the
joint posterior for large data, we approximate the posterior
over A as2

qθ(θ) =

T∏
j=1

N (aj |µaj ,ΣA),

where the covariance and mean are given by

Σ−1
A = WA + diag(α), (28)
µaj = ΣASAej . (29)

3.3. Hyperparameter estimation

We update hyperparameters so as to maximize the varia-
tional lower bound on the marginal likelihood (eq. 11). The
lower bound can be simplified as3

log p(y1:T |φ) ≥ logZ ′ −KL(q(θ)||p(θ)), (30)

where

Z ′ =

∫
dz0:T exp

(
Eqθ(θ) log p(z0:T ,y1:T |θ)

)
. (31)

The KL divergence between q(θ) and p(θ) is given by
k∑
j=1

∫
dajN (aj |µaj ,ΣA) log

N (aj |µaj ,ΣA)

N (aj |0, diag(α−1))
,

=

k∑
j=1

(− 1
2 log |diag(α)ΣA|+

1
2 Tr

[
diag(α)(ΣA − diag(α)−1 + µajµaj

>)
]
).

1The formula for ML estimate of the noise covariance is given
in (Bishop, 2006)

2This corresponds to assuming the latent noise covariance to
be diagonal.

3See Ch.5 in (Beal, 2003) for derivation in detail

The first derivative expression of α gives us the following
update:

α−1 = 1
kdiag [

k∑
j=1

(ΣA + µajµaj
>) ]. (32)

Similarly, we update the hyperparameters for initial states
by

µ0 = ω0, (33)
Σ0 = Υ0,0. (34)

The summary of the entire algorithm is given below:

Algorithm 1 VBEM for dynamic proportion models
Given data D and initial q(θ), iterate the following:

1. VBE step: Given q(θ), compute forward (α), back-
ward (β) and marginal (γ) messages and the cross-
covariation of messages at each time.

2. VBM Step: Given q(z0:T ), update q(θ).

3. Update hyperparameters.

Until convergence.

4. Prediction
Given p(zT |y1:T ) ≈ N (µ̂T , V̂T ), we want to make a pre-
diction on the time series in each level of hierarchy by

p(yT+1|y1:T ) =

∫
p(yT+1|zT+1)p(zT+1|y1:T )dzT+1, (35)

where the second part of the integrand is

p(zT+1|y1:T ) =

∫
exp

(
Eqθ(θ) log p(zT+1|zT )

)
N (zT |µ̂T , V̂T ) dzT , (36)

= N (zT+1|µ̃T+1, ṼT+1) (37)

where the mean and covariance are given by

Ṽ −1
T+1 = Σ + 〈A〉V̂T 〈A〉>,

µ̃T+1 = 〈A〉µ̂T .

The integral in eq. 35 is not analytically tractable due to
the non-Gaussian likelihood term. One can do is to draw
samples of ziT+1 from eq. 36, and approximate

p(yT+1|y1:T ) ≈
∑
i

p(yT+1|y1:T , z
i
T+1). (38)

It is straightforward to extend this to multiple steps ahead
prediction.
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Figure 2. Example of two-level hierarchical time series: Aus-
tralian domestic tourism demands. Total domestic tourism de-
mands are in the top level, which are disaggregated by four differ-
ent purpose of travel: holiday, visiting friends/relatives, business,
and others. Each of Level-1 time series is then disaggregated by 6
different regions: New South Wales, Queensland, Victoria, West-
ern Australia, Tasmania and the Northern territory.

5. Experiments
We apply our method to forecasting time series using data
generated from a toy two-level hierarchical network given
in Fig. 2. This network represents the hierarchy present
in Australian domestic tourism data. This data is an indi-
cator of tourism activity: the number of visitor nights per
quarter consists of time series. There are two levels of hi-
erarchy in the data as shown in Fig. 2. The aggregated do-
mestic tourism demand for the entire Australia consists of
the top level time series. At (sub) level 1, the top level
time series is disaggregated by four different purpose of
travel: Holiday, Visiting friends and relatives, Business,
and Others. At (sub) level 2, the level 1 time series is
disaggregated by seven different states and territories they
visited: New South Wales, Queensland, Victoria, Western
Australia, Tasmania, and the Northern Territory. Therefore,
there are 4 time series at level 1, 24 time series at level 2.

We generated each time series from the AR-1 processes
with random parameters. To make sure the sum of sub-
level time series matches the upper-level time series, we
divide the sub-level time series by the sum of sub-level time
series. This gives us a proportion at the sub-level, which we
multiply by the upper-level time series to obtain the revised
sub-level time series.

For forecasting individual time series independently, we
used an ARMA model using the automatic algorithm devel-
oped in (Hyndman & Khandakar, 2008). We used the first
120 observations (1980:Q1-2010:Q4) as a training set and
predicted tourism demands up to 4-steps ahead (i.e., Q1,

Table 1. Forecasting performance (MAPE) Our method (DPM)
outperforms other methods. The DPM achieved the lowest aver-
age MAPE across the three levels, 22.80. The second best method
(TD) achieved average MAPE 28.78.

METHOD Q1 Q2 Q3 Q4 AVG

TOP LEVEL
INDEP 9.32 34.01 26.58 20.17 22.52
(TD/DPM)
BU 4.14 42.83 29.84 23.10 24.98
OPTIMAL 6.13 34.92 26.58 19.98 21.90

LEVEL-1
INDEP 14.07 50.76 38.99 33.50 33.58
TD 13.36 38.65 31.46 28.05 27.88
BU 10.86 49.19 37.51 32.27 32.46
OPTIMAL 13.55 41.56 33.56 29.72 29.60
DPM 9.36 30.43 23.78 20.86 21.11

LEVEL-2
INDEP 26.11 58.91 46.52 40.51 43.01
TD 24.62 47.16 38.15 33.87 35.95
BU 26.11 58.91 46.52 40.51 43.01
OPTIMAL 27.21 52.00 41.90 37.00 39.53
DPM 10.23 29.96 27.16 31.74 24.77

Q2, Q3, and Q4 in 2011). We computed the MAPE (mean
absolute percentage error) values from these results and
computed the average in Table 1. For the top-down method
(TD), we used the forecasted proportion (FP) method. For
the bottom-up method (BU), we used the simple summa-
tion of the individual forecasts at the bottom level. As
shown in Table 1, our method outperforms other methods.

6. Discussion
In this paper, we modeled the proportion changes of hi-
erarchically structured time series using linear dynamical
systems with multinomial observations. We developed the
variational Bayesian expectation maximization algorithm
for posterior inference and parameter estimation. The se-
quential forward/backward type algorithm allows us to par-
allelize the posterior inference, which would be beneficial
when dealing with large datasets. Simulation results on a
toy dataset show the effectiveness of our approach.

A potential criticism of our approach would be that our
method highly relies on top level prediction. However, top
level time series are often periodic and less abruptly chang-
ing over time (since they are sum of many sub-level time
series) compared to individual time series at the bottom
level. The prediction performance at the top level typically
outperforms sub-level prediction (Table 1 shows the same
trend). It would be interesting to test our method to large
hierarchical time series datasets in future work.
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