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Abstract

We introduce the Locally Linear Latent Variable Model (LL-LVM), a probabilistic
model for non-linear manifold discovery that describes a joint distribution over ob-
servations, their manifold coordinates and locally linear maps conditioned on a set
of neighbourhood relationships. The model allows straightforward variational op-
timisation of the posterior distribution on coordinates and locally linear maps from
the latent space to the observation space given the data. Thus, the LL-LVM en-
capsulates the local-geometry preserving intuitions that underlie non-probabilistic
methods such as locally linear embedding (LLE). Its probabilistic semantics make
it easy to evaluate the quality of hypothesised neighbourhood relationships, select
the intrinsic dimensionality of the manifold, construct out-of-sample extensions
and to combine the manifold model with additional probabilistic models that cap-
ture the structure of coordinates within the manifold.

1 Introduction

Many high-dimensional datasets comprise points derived from a smooth, lower-dimensional mani-
fold embedded within the high-dimensional space of measurements and possibly corrupted by noise.
For instance, biological or medical imaging data might reflect the interplay of a small number of la-
tent processes that all affect measurements non-linearly. Linear multivariate analyses such as princi-
pal component analysis (PCA) or multidimensional scaling (MDS) have long been used to estimate
such underlying processes, but cannot always reveal low-dimensional structure when the mapping is
non-linear (or, equivalently, the manifold is curved). Thus, there has been substantial recent interest
in algorithms to identify non-linear manifolds in data.

Many more-or-less heuristic methods for non-linear manifold discovery are based on the idea of
preserving the geometric properties of local neighbourhoods within the data, while embedding, un-
folding or otherwise transforming the data to occupy fewer dimensions. Thus, algorithms such as
locally-linear embedding (LLE) and Laplacian eigenmap attempt to preserve local linear relation-
ships or to minimise the distortion of local derivatives [1, 2]. Others, like Isometric feature mapping
(Isomap) or maximum variance unfolding (MVU) preserve local distances, estimating global man-
ifold properties by continuation across neighbourhoods before embedding to lower dimensions by
classical methods such as PCA or MDS [3]. While generally hewing to this same intuitive path, the
range of available algorithms has grown very substantially in recent years [4, 5].

However, these approaches do not define distributions over the data or over the manifold properties.
Thus, they provide no measures of uncertainty on manifold structure or on the low-dimensional
∗Currrent affiliation: Google Deepmind
†Currrent affiliation: Thread Genius
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locations of the embedded points; they cannot be combined with a structured probabilistic model
within the manifold to define a full likelihood relative to the high-dimensional observations; and they
provide only heuristic methods to evaluate the manifold dimensionality. As others have pointed out,
they also make it difficult to extend the manifold definition to out-of-sample points in a principled
way [6].

An established alternative is to construct an explicit probabilistic model of the functional relationship
between low-dimensional manifold coordinates and each measured dimension of the data, assuming
that the functions instantiate draws from Gaussian-process priors. The original Gaussian process
latent variable model (GP-LVM) required optimisation of the low-dimensional coordinates, and thus
still did not provide uncertainties on these locations or allow evaluation of the likelihood of a model
over them [7]; however a recent extension exploits an auxiliary variable approach to optimise a
more general variational bound, thus retaining approximate probabilistic semantics within the latent
space [8]. The stochastic process model for the mapping functions also makes it straightforward
to estimate the function at previously unobserved points, thus generalising out-of-sample with ease.
However, the GP-LVM gives up on the intuitive preservation of local neighbourhood properties that
underpin the non-probabilistic methods reviewed above. Instead, the expected smoothness or other
structure of the manifold must be defined by the Gaussian process covariance function, chosen a
priori.

Here, we introduce a new probabilistic model over high-dimensional observations, low-dimensional
embedded locations and locally-linear mappings between high and low dimensional linear maps
within each neighbourhood, such that each group of variables is Gaussian distributed given the
other two. This locally linear latent variable model (LL-LVM) thus respects the same intuitions
as the common non-probabilistic manifold discovery algorithms, while still defining a full-fledged
probabilistic model. Indeed, variational inference in this model follows more directly and with
fewer separate bounding operations than the sparse auxiliary-variable approach used with the GP-
LVM. Thus, uncertainty in the low-dimensional coordinates and in the manifold shape (defined
by the local maps) is captured naturally. A lower bound on the marginal likelihood of the model
makes it possible to select between different latent dimensionalities and, perhaps most crucially,
between different definitions of neighbourhood, thus addressing an important unsolved issue with
neighbourhood-defined algorithms. Unlike existing probabilistic frameworks with locally linear
models such as mixtures of factor analysers (MFA)-based and local tangent space analysis (LTSA)-
based methods [9, 10, 11], LL-LVM does not require an extra step to obtain the globally consistent
alignment of low-dimensional local coordinates.1

This paper is organised as follows. In section 2, we introduce our generative model, LL-LVM, for
which we derive the variational inference method in section 3. We briefly describe out-of-sample
extension for LL-LVM and mathematically describe the dissimilarity between LL-LVM and GP-
LVM at the end of section 3. In section 4, we demonstrate the approach on several real world
problems.

Notation: Let blkdiag(·) output a block diagonal matrix of its arguments. We formulate a diagonal
matrix via diag(v) where the diagonal elements are v. We denote a vector of ones by 1. The
Euclidean norm of a vector is ||v||, the Frobenius norm of a matrix is ||M||F . We represent the
Kronecker product of two matrices by M⊗N. For a random vector w, we denote the normalisation
constant in its probability density function by Zw. The expectation of a random vector w with
respect to a density q is 〈w〉q . The Kronecker delta is denoted by δij = 1 if i = j, and 0 otherwise.

2 Our model: LL-LVM

Suppose we have n data points denoted by y = [y1
>, · · · ,yn>]>, where yi ∈ Rdy and there

is a neighbourhood graph denoted by G for y. As in many nonlinear dimensionality reduction
techniques, we assume that there is a low dimensional (latent) representation of the high dimensional
data, x = [x1

>, · · · ,xn>]>, where xi ∈ Rdx .

Our key assumption is that there is a locally linear mapping between tangent spaces defined in the
low and high dimensional spaces (See Fig. 1). The tangent spaces are approximated by {yj − yi}

1As an exception, MFA-based method presented in [12] jointly finds the global coordinate and estimates the
model parameters by maximising the lower bound.
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Figure 1: Locally linear mapping Ci

for ith data point transforms the tangent
space, TxiMx at xi in the low dimen-
sional space to the tangent space, TyiMy

at the corresponding data point yi in the
high dimensional space. A neighbouring
data point is denoted by yj and the corre-
sponding latent variable by xj .

and {xj − xi}, the pairwise differences between the ith point and its neighbouring points j. The
matrix Ci ∈ Rdy×dx at the ith point linearly maps those tangent spaces as

yj − yi ≈ Ci(xj − xi). (1)

Under this assumption, we aim to find the distribution over the linear maps C = [C1, · · · ,Cn] ∈
Rdy×ndx and the latent variables x that best describe the data likelihood given a graph G:

log p(y|G) = log

∫ ∫
p(y,C,x|G) dxdC. (2)

The joint distribution can be written in terms of priors on C,x and the likelihood of y as

p(y,C,x|G) = p(y|C,x,G)p(C|G)p(x|G). (3)

In the following, we highlight the essential components of our model referred to as Locally Linear
Latent Variable Model (LL-LVM). Detailed derivations are given in the Appendix.

Adjacency matrix and Laplacian matrix The graph G for n data points specifies the n × n
symmetric adjacency matrix G. The i, jth element of G is written ηij , and is 1 if yj and yi are
neighbouring and 0 if not. We assume ηii = 0 to avoid degeneracy. We denote the graph Laplacian
matrix by L = diag(G1)−G.

Prior on x We assume that the latent variables are zero-centered and not too large. Furthermore,
we assume that the neighbouring latent variables are similar in terms of Euclidean distance. For-
mally, the log prior on x is

log p(x|G, α) = − 1
2

n∑
i=1

(α||xi||2 +

n∑
j=1

ηij ||xi − xj ||2)− logZx,

where the parameter α controls the expected scale (α > 0). An equivalent form of the prior on x is
a multivariate normal distribution

p(x|G, α) = N (0,Π), where Ω−1 = 2L⊗ Idx , Π−1 = αIndx + Ω−1.

Prior on C We assume that the linear maps of neighbouring points are similar in terms of Frobe-
nius norm

log p(C|G) = − ε
2
||

n∑
i=1

Ci||2F −
1

2

n∑
i=1

n∑
j=1

ηij ||Ci −Cj ||2F − logZc

= −1

2
Tr
[
(εJJ> + Ω−1)C>C

]
− logZc, (4)

where J := 1n ⊗ Idx . The expression is in the form of the density of a matrix normal distribution
yielding p(C|G) =MN (C|0, Idy , (εJJ>+Ω−1)−1) as the prior on C. In our implementation, we
fix ε to a small value2, since the magnitude of Ci and xi can be controlled by the hyper-parameter
α, which is optimised in the M-step.

2Adding ε enables us to invert the prior precision matrix.
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Figure 2: Graphical representation of generative process in LL-
LVM. Given a dataset, we construct a neighbourhood graph G. The
distribution over the latent variable x is controlled by the graph G
as well as the parameter α. The distribution over the linear map C
is also governed by the graph G The latent variable x and the linear
map C together determine the data likelihood.

Likelihood In accordance with Eq. (1), we penalise the approximation error which yields the log
likelihood

log p(y|C,x,V,G) = − ε
2
||

n∑
i=1

yi||2− 1
2

n∑
i=1

n∑
j=1

ηij(∆yj,i−Ci∆xj,i)
>V−1(∆yj,i−Ci∆xj,i)− logZy,

(5)
where ∆yj,i

= yj − yi and ∆xj,i
= xj − xi. An equivalent form of the likelihood is a multivariate

normal distribution3 in y is given by

p(y|C,x,V,G) = N (µy,Σy),

Σ−1y = (ε1n1n
>) ⊗ Idy + 2L ⊗ V−1, µy = Σye, and e = [e1

>, · · · , en>]> ∈ Rndy whose
ith vector is given by ei = −

∑n
j=1 ηjiV

−1(Cj + Ci)∆xj,i
. The graphical representation of the

generative process of LL-LVM is given in Fig. 2.

3 Variational inference

Our goal is to infer the latent variables (x,C) as well as the parameters θ = {α,V} in LL-LVM.
We infer them by maximising the lower bound L of the marginal likelihood of the observations

log p(y|G,θ) ≥
∫ ∫

q(C,x) log
p(y,C,x|G,θ)

q(C,x)
dxdC := L(q(C,x),θ). (6)

Following the common treatment for computational tractability, we assume the posterior over (C,x)
factorises as q(C,x) = q(x)q(C) [13]. We maximise the lower bound w.r.t. q(C,x) and θ by the
variational expectation maximization algorithm [14], which consists of (1) the variational expecta-
tion step for computing q(C,x) by

q(x) ∝ exp

[∫
q(C) log p(y,C,x|G,θ)dC

]
, (7)

q(C) ∝ exp

[∫
q(x) log p(y,C,x|G,θ)dx

]
, (8)

then (2) the maximization step for estimating θ by θ̂ = arg maxθ L(q(C,x),θ).

Variational-E step Computing q(x) from Eq. (7) requires rewriting the likelihood in Eq. (5) as a
quadratic function in x

p(y|C,x,θ,G) = 1
Z̃x

exp
[
− 1

2 (x>Ax− 2x>b)
]
,

where the normaliser Z̃x has all the terms that do not depend on x from Eq. (5). Let L̃ := (ε1n1>n +
2γL)−1. The matrix A is given by A := A>EΣyAE = [Aij ]

n
i,j=1 ∈ Rndx×ndx where the i, jth

dx × dx block is Aij =
∑n
p=1

∑n
q=1 L̃(p, q)AE(p, i)>AE(q, j) and each i, jth (dy × dx) block of

AE ∈ Rndy×ndx is given by AE(i, j) = −ηijV−1(Cj + Ci) + δij
[∑

k ηikV
−1(Ck + Ci)

]
. The

vector b is defined as b = [b1
>, · · · ,bn>]> ∈ Rndx whose ith vector of length dx is

b = [b1
>, · · · ,bn>]> ∈ Rndx where bi =

∑n
j=1 ηij(Cj

>V−1(yi − yj)−Ci
>V−1(yj − yi)).

The likelihood combined with the prior on x gives us the Gaussian posterior over x (i.e., solving
Eq. (7))

q(x) = N (x|µx,Σx), where Σ−1x = 〈A〉q(C) + Π−1, µx = Σx〈b〉q(C). (9)

3For the same reason as the prior precision matrix on C, we add a small value of ε to invert the precision
matrix.
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Figure 3: A simulated example. A: 400 data points drawn from Swiss Roll. B: true latent points (x)
in 2D used for generating the data. C: Posterior mean of C and D: posterior mean of x after 50 EM
iterations given k = 9, which was chosen by maximising the lower bound across different k’s. E:
Average lower bounds as a function of k. Each point is an average across 10 random seeds.

Similarly, computing q(C) from Eq. (8) requires rewriting the likelihood in Eq. (5) as a quadratic
function in C

p(y|C,x,G,θ) = 1
Z̃C

exp[− 1
2Tr(ΓC>C− 2C>V−1H)], (10)

where the normaliser Z̃C has all the terms that do not depend on C from Eq. (5), and Γ := QL̃Q>.
The matrix Q = [q1 q2 · · · qn] ∈ Rndx×n where the jth subvector of the ith column is qi(j) =
ηijV

−1(xi−xj) + δij
[∑

k ηikV
−1(xi − xk)

]
∈ Rdx . We define H = [H1, · · · ,Hn] ∈ Rdy×ndx

whose ith block is Hi =
∑n
j=1 ηij(yj − yi)(xj − xi)

>.

The likelihood combined with the prior on c gives us the Gaussian posterior over c (i.e., solving
Eq. (8))

q(C) =MN (µC, I,ΣC),where Σ−1
C := 〈Γ〉q(x) + εJJ> + Ω−1 and µC = V−1〈H〉q(x)Σ>C. (11)

The expected values of A,b,Γ and H are given in the Appendix.

Variational-M step We set the parameters θ by maximising L(q(C,x),θ) w.r.t. θ which is split
into two terms based on dependence on each parameter: (1) expected log-likelihood for updating
V by arg maxV Eq(x)q(C)[log p(y|C,x,V,G)]; and (2) negative KL divergence between the prior
and the posterior on x for updating α by arg maxα Eq(x)q(C)[log p(x|G, α) − log q(x)]. Update
rules for each hyperparameter are given in the Appendix.

The full EM algorithm4 starts with an initial value of θ. In the E-step, given q(C), compute q(x)
as in Eq. (9). Likewise, given q(x), compute q(C) as in Eq. (11). The parameters θ are updated
in the M-step by maximising Eq. (6). The two steps are repeated until the variational lower bound
in Eq. (6) saturates. To give a sense of how the algorithm works, we visualise fitting results for
a simulated example in Fig. 3. Using the graph constructed from 3D observations given different
k, we run our EM algorithm. The posterior means of x and C given the optimal k chosen by the
maximum lower bound resemble the true manifolds in 2D and 3D spaces, respectively.

Out-of-sample extension In the LL-LVM model one can formulate a computationally efficient
out-of-sample extension technique as follows. Given n data points denoted by D = {y1, · · · ,yn},
the variational EM algorithm derived in the previous section converts D into the posterior q(x,C):
D 7→ q(x)q(C). Now, given a new high-dimensional data point y∗, one can first find
the neighbourhood of y∗ without changing the current neighbourhood graph. Then, it is pos-
sible to compute the distributions over the corresponding locally linear map and latent variable
q(C∗,x∗) via simply performing the E-step given q(x)q(C) (freezing all other quantities the same)
as D ∪ {y∗} 7→ q(x)q(C)q(x∗)q(C∗).

4The MATLAB implementation is available at https://github.com/mijungi/lllvm.
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Figure 4: Resolving short-circuiting problems using variational lower bound. A: Visualization of
400 samples drawn from a Swiss Roll in 3D space. Points 28 (red) and 29 (blue) are close to each
other (dotted grey) in 3D. B: Visualization of the 400 samples on the latent 2D manifold. The
distance between points 28 and 29 is seen to be large. C: Posterior mean of x with/without short-
circuiting the 28th and the 29th data points. The EM algorithm without the shortcut (left) achieves
higher lower bound than that with the shortcut. The red and blue parts are mixed in the resulting
estimate in 2D space (right) in case with the shortcut. The lower bound is obtained after 50 EM
iterations.

Comparison to GP-LVM A closely related probabilistic dimensionality reduction algorithm to
LL-LVM is GP-LVM [7]. GP-LVM defines the mapping from the latent space to data space using
Gaussian processes. The likelihood of the observations Y = [y1, . . . ,ydy ] ∈ Rn×dy given latent
variables X = [x1, . . . ,xdx ] ∈ Rn×dx is defined by p(Y|X) =

∏dy
k=1N (yk|0,Knn + β−1In),

where the i, jth element of the covariance matrix is of the exponentiated quadratic form: k(xi,xj) =

σ2
f exp

[
− 1

2

∑dx
q=1 αq(xi,q − xj,q)2

]
. Here, the parameters αq determine the relevant dimensional-

ity of the latent space [8]. In LL-LVM, once we integrate out C from Eq. (5), we also obtain the
Gaussian likelihood given x,

p(y|x,G,θ) =

∫
p(y|C,x,G,θ)p(C|G,θ)dC = 1

ZYy
exp

[
− 1

2y> K−1LL y
]
.

In contrast to GP-LVM, the precision matrix K−1LL takes the form of (2L ⊗ V−1) − (W ⊗
V−1) Λ (W> ⊗ V−1), where both W and Λ are a function of the Laplacian matrix. There-
fore, under our model, the graph structure directly determines the functional form of precision in
the likelihood term.

4 Experiments

4.1 Mitigating the short-circuit problem

Like other neighbour-based methods, LL-LVM is sensitive to misspecified neighbourhoods; the
prior, likelihood, and posterior all depend on the assumed graph. Unlike other methods, LL-
LVM provides a natural way to evaluate possible short-circuits using the variational lower bound
of Eq. (6). Fig. 4 shows 400 samples drawn from a Swiss Roll in 3D space (Fig. 4A). Two points,
labelled 28 and 29, happen to fall close to each other in 3D, but are actually far apart on the la-
tent (2D) surface (Fig. 4B). A k-nearest-neighbour graph might link these, distorting the recovered
coordinates. However, evaluating the model with and without this edge yields a higher variational
bound for the correct graph. Although prohibitive to evaluate every possible graph in this way, the
availability of a principled criterion to test specific hypotheses is of obvious value.

In the following, we demonstrate LL-LVM on two real datasets: handwritten digits and climate data.

4.2 Modelling USPS handwritten digits

As a first real-data example, we test our method on a subset of 80 samples each of the digits
0, 1, 2, 3, 4 from the USPS digit dataset, where each digit is size of 16×16 (i.e., n = 400, dy = 256).
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Figure 5: USPS handwritten digit dataset described in section 4.2. A: Mean (in solid) and variance
(1 standard deviation shading) of the variational lower bound across 10 different random starts of
EM algorithm with different k’s. The highest lower bound is achieved when k = n/80. B: The
posterior mean of x in 2D. Each digit is colour coded. On the right side are reconstructions of y∗ for
randomly chosen query points x∗. Using neighbouring y and posterior means of C we can recover
y∗ successfully (see text). C: Fitting results by GP-LVM using the same data. D: ISOMAP and
E: LLE with the same k. Using the extracted features (in 2D), we evaluated a 1-NN classifier for
digit identity with 10-fold cross-validation (the same data divided into 10 training and test sets). The
classification error is shown in F. LL-LVM features yield the comparably low error with GP-LVM
and ISOMAP.

We follow [7], and represent the low dimensional latent variables in 2D. In this experiment, we set
V−1 = γI for simplicity, so the parameters are θ = {α, γ}.
Fig. 5A shows variational lower bounds for different values of k, using 9 different EM initialisations.
The posterior mean of x under LL-LVM using the best k is illustrated in Fig. 5B, where grouping by
digit identity (represented in colour) is notable. Fig. 5B also shows reconstructions of one randomly-
selected example of each digit, using its 2D coordinates x∗ as well as the posterior mean coordinates
x̂i, tangent spaces Ĉi and actual images yi of its k = n/80 closest neighbours. The reconstruction
is based on the assumed tangent-space structure of the generative model (Eq. (5)), that is: ŷ∗ =
1
k

∑k
i=1

[
yi + Ĉi(x

∗ − x̂i)
]
. A similar process could be used to reconstruct digits at out-of-sample

locations. Finally, we quantify the relevance of the recovered subspace by computing the error
incurred using a simple classifier to report digit identity using the 2D features obtained by LL-LVM
and various competing methods (Fig. 5C-F). Classification with LL-LVM coordinates performs
similarly to GP-LVM and ISOMAP (k = 30), outperforms LLE (k = 40).

4.3 Mapping climate data

In a second experiment, we attempted to recover 2D geographical relationships between weather
stations from recorded monthly precipitation patterns. Data were obtained by averaging month-by-
month annual precipitation records from 2005–2014 at 400 weather stations scattered across the US
(see Fig. 6) 5. Thus, the data set comprised 400 12-dimensional vectors. The goal of the experiment

5The dataset is made available by the National Climatic Data Center at http://www.ncdc.noaa.
gov/oa/climate/research/ushcn/. We use version 2.5 monthly data [15].
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Figure 6: Climate modelling problem as described in section 4.3. Each example corresponding to
a weather station is a 12-dimensional vector of monthly precipitation measurements. Using only
the measurements, the projection obtained from the proposed LL-LVM recovers the topological
arrangement of the stations to a large degree.

is to recover the two-dimensional topology of the weather stations (as given by their latitude and
longitude) using only these 12-dimensional climatic measurements. As before, we compare the pro-
jected points obtained by LL-LVM with several widely used dimensionality reduction techniques.
For the graph-based methods LL-LVM, LTSA, ISOMAP, and LLE, we used 12-NN with Euclidean
distance to construct the neighbourhood graph.

The results are presented in Fig. 6. LL-LVM identified a more geographically-accurate arrangement
for the weather stations than the other algorithms. The fully probabilistic nature of LL-LVM and
GPLVM allowed these algorithms to handle the noise present in the measurements in a principled
way. This contrasts with ISOMAP which can be topologically unstable [16] i.e. vulnerable to short-
circuit errors if the neighbourhood is too large. Perhaps coincidentally, LL-LVM also seems to
respect local geography more fully in places than does GP-LVM.

5 Conclusion

We have demonstrated a new probabilistic approach to non-linear manifold discovery that embod-
ies the central notion that local geometries are mapped linearly between manifold coordinates and
high-dimensional observations. The approach offers a natural variational algorithm for learning,
quantifies local uncertainty in the manifold, and permits evaluation of hypothetical neighbourhood
relationships.

In the present study, we have described the LL-LVM model conditioned on a neighbourhood graph.
In principle, it is also possible to extend LL-LVM so as to construct a distance matrix as in [17], by
maximising the data likelihood. We leave this as a direction for future work.
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