
Published in: Adv. Neural Information Processing Systems 24. (2011)

Active learning of neural response functions
with Gaussian processes

Mijung Park
Electrical and Computer Engineering

The University of Texas at Austin
mjpark@mail.utexas.edu

Gregory D. Horwitz
Departments of Physiology and Biophysics

The University of Washington
ghorwitz@uw.edu

Jonathan W. Pillow
Departments of Psychology and Neurobiology

The University of Texas at Austin
pillow@mail.utexas.edu

Abstract

A sizeable literature has focused on the problem of estimating a low-dimensional
feature space for a neuron’s stimulus sensitivity. However, comparatively little
work has addressed the problem of estimating the nonlinear function from feature
space to spike rate. Here, we use a Gaussian process (GP) prior over the infinite-
dimensional space of nonlinear functions to obtain Bayesian estimates of the “non-
linearity” in the linear-nonlinear-Poisson (LNP) encoding model. This approach
offers increased flexibility, robustness, and computational tractability compared
to traditional methods (e.g., parametric forms, histograms, cubic splines). We
then develop a framework for optimal experimental design under the GP-Poisson
model using uncertainty sampling. This involves adaptively selecting stimuli ac-
cording to an information-theoretic criterion, with the goal of characterizing the
nonlinearity with as little experimental data as possible. Our framework relies on
a method for rapidly updating hyperparameters under a Gaussian approximation
to the posterior. We apply these methods to neural data from a color-tuned sim-
ple cell in macaque V1, characterizing its nonlinear response function in the 3D
space of cone contrasts. We find that it combines cone inputs in a highly nonlinear
manner. With simulated experiments, we show that optimal design substantially
reduces the amount of data required to estimate these nonlinear combination rules.

1 Introduction

One of the central problems in systems neuroscience is to understand how neural spike responses
convey information about environmental stimuli, which is often called the neural coding problem.
One approach to this problem is to build an explicit encoding model of the stimulus-conditional
response distribution p(r|x), where r is a (scalar) spike count elicited in response to a (vector) stim-
ulus x. The popular linear-nonlinear-Poisson (LNP) model characterizes this encoding relationship
in terms of a cascade of stages: (1) linear dimensionality reduction using a bank of filters or receptive
fields; (2) a nonlinear function from filter outputs to spike rate; and (3) an inhomogeneous Poisson
spiking process [1].

While a sizable literature [2–10] has addressed the problem of estimating the linear front end to this
model, the nonlinear stage has received comparatively less attention. Most prior work has focused
on: simple parametric forms [6, 9, 11]; non-parametric methods that do not scale easily to high

1

Poisson
spiking

input response

nonlinearity inverse-link

history filter

Figure 1: Encoding model schematic. The nonlinear function f converts an input vector x to a
scalar, which g then transforms to a non-negative spike rate λ = g(f(x)). The spike response r is a
Poisson random variable with mean λ.

dimensions (e.g., histograms, splines) [7, 12]; or nonlinearities defined by a sum or product of 1D
nonlinear functions [10, 13].

In this paper, we use a Gaussian process (GP) to provide a flexible, computationally tractable model
of the multi-dimensional neural response nonlinearity f(x), where x is a vector in feature space.
Intuitively, a GP defines a probability distribution over the infinite-dimensional space of functions
by specifying a Gaussian distribution over its finite-dimensional marginals (i.e., the probability over
the function values at any finite collection of points), with hyperparameters that control the func-
tion’s variability and smoothness [14]. Although exact inference under a model with GP prior and
Poisson observations is analytically intractable, a variety of approximate and sampling-based infer-
ence methods have been developed [15, 16]). Our work builds on a substantial literature in neuro-
science that has used GP-based models to decode spike trains [17–19], estimate spatial receptive
fields [20,21], infer continuous spike rates from spike trains [22–24], infer common inputs [25], and
extract low-dimensional latent variables from multi-neuron spiking activity [26, 27].

We focus on data from trial-based experiments where stimulus-response pairs (x, r) are sparse in the
space of possible stimuli. We use a fixed inverse link function g to transform f(x) to a non-negative
spike rate, which ensures the posterior over f is log-concave [6, 20]. This log-concavity justifies a
Gaussian approximation to the posterior, which we use to perform rapid empirical Bayes estimation
of hyperparameters [5, 28]. Our main contribution is an algorithm for optimal experimental design,
which allows f to be characterized quickly and accurately from limited data [29, 30]. The method
relies on uncertainty sampling [31], which involves selecting the stimulus x for which g(f(x)) is
maximally uncertain given the data collected in the experiment so far. We apply our methods to
the nonlinear color-tuning properties of macaque V1 neurons. We show that the GP-Poisson model
provides a flexible, tractable model for these responses, and that optimal design can substantially
reduce the number of stimuli required to characterize them.

2 GP-Poisson neural encoding model

2.1 Encoding model (likelihood)

We begin by defining a probabilistic encoding model for the neural response. Let ri be an observed
neural response (the spike count in some time interval T) at the i’th trial given the input stimulus
xi. Here, we will assume that x is D-dimensional vector in the moderately low-dimensional neural
feature space to which the neuron is sensitive, the output of the “L” stage in the LNP model.

Under the encoding model (Fig. 1), an input vector xi passes through a nonlinear function f , whose
real-valued output is transformed to a positive spike rate through a (fixed) function g. The spike re-
sponse is a Poisson random variable with mean g(f(x)), so the conditional probability of a stimulus-
response pair is Poisson:

p(ri|xi, f) = 1
ri!
λrii e

−λi , λi = g(f(xi)). (1)

For a complete dataset, the log-likelihood is:

L(f) = log p(r|X, f) = r> log(g(f))− 1>g(f) + const, (2)

2

where r = (r1, . . . , rN)> is a vector of spike responses, 1 is a vector of ones, and f =
(f(x1), . . . f(xN))> is shorthand for the vector defined by evaluating f at the points in X =
{x1, . . .xN}. Note that although f is an infinite-dimensional object in the space of functions, the
likelihood only depends on the value of f at the points in X .

In this paper, we fix the inverse-link function to g(f) = log(1 + exp(f)), which has the nice
property that it grows linearly for large f and decays gracefully to zero for negative f . This allows
us to place a Gaussian prior on f without allocating probability mass to negative spike rates, and
obviates the need for constrained optimization of f (but see [22] for a highly efficient solution). Most
importantly, for any g that is simultaneously convex and log-concave1, the log-likelihood L(f) is
concave in f , meaning it is free of non-global local extrema [6,20]. CombiningLwith a log-concave
prior (as we do in the next section) ensures the log-posterior is also concave.

2.2 Gaussian Process prior

Gaussian processes (GPs) allow us to define a probability distribution over the infinite-dimensional
space of functions by specifying a Gaussian distribution over a function’s finite-dimensional
marginals (i.e., the probability over the function values at any finite collection of points). The hy-
perparameters defining this prior are a mean µf and a kernel function k(xi,xj) that specifies the
covariance between function values f(xi) and f(xj) for any pair of input points xi and xj . Thus,
the GP prior over the function values f is given by

p(f) = N (f |µf1,K) = |2πK|−
1
2 exp

(
− 1

2 (f − µf1)>K−1(f − µf1)
)

(3)

where K is a covariance matrix whose i, j’th entry is Kij = k(xi,xj). Generally, the kernel
controls the prior smoothness of f by determining how quickly the correlation between nearby
function values falls off as a function of distance. (See [14] for a general treatment). Here, we use a
Gaussian kernel, since neural response nonlinearities are expected to be smooth in general:

k(xi,xj) = ρ exp
(
−||xi − xj ||2/(2τ)

)
, (4)

where hyperparameters ρ and τ control the marginal variance and smoothness scale, respectively.
The GP therefore has three total hyperparameters, θ = {µf , ρ, τ} which set the prior mean and
covariance matrix over f for any collection of points in X .

2.3 MAP inference for f

The maximum a posteriori (MAP) estimate can be obtained by numerically maximizing the posterior
for f . From Bayes rule, the log-posterior is simply the sum of the log-likelihood (eq. 2) and log-prior
(eq. 3) plus a constant:

log p(f |r, X, θ) = r> log(g(f))− 1>g(f)− 1
2 (f − µf)>K−1(f − µf) + const. (5)

As noted above, this posterior has a unique maximum fmap so long as g is convex and log-concave.

However, the solution vector fmap defined this way contains only the function values at the points
in the training set X . How do we find the MAP estimate of f at other points not in our training set?
The GP prior provides a simple analytic formula for the mean of f∗ for any new points X∗ given f
at the training data, i.e., E[f∗|f , X∗, θ] = µf + K∗>K−1(f − µf), where K∗il = k(x∗i ,xl). Under
the Gaussian approximation (eq. 9), the posterior mean for any new points f∗ = f(X∗) is given by

E[f∗|X∗, r, X, θ] =

∫
E[f∗|f , X∗, θ]p(f |r, X, θ)df = µf +K∗K−1(fmap − µf). (6)

The posterior variance for f∗ is given by 2,

V[f∗|X∗, r, X, θ] = K∗∗ −K∗(K +H−1)−1K∗>, (7)

where K∗∗ij = k(x∗i ,x
∗
j).

1Such functions must grow monotonically at least linearly and at most exponentially [6]. Examples include
exponential, half-rectified linear, log(1 + exp(f))p for p ≥ 1.

2See page 44 in [14] for more details.

3

In practice, the prior covariance matrix K is often ill-conditioned when datapoints in X are closely
spaced and smoothing hyperparameter τ is large, making it impossible to numerically compute
K−1. When the number of points is not too large (N < 1000), we can address this by performing a
singular value decomposition (SVD) of K and keeping only the singular vectors with singular value
above some threshold. This results in a lower-dimensional numerical optimization problem, since
we only have to search the space spanned by the singular vectors of K. We discuss strategies for
scaling to larger datasets in the Discussion.

2.4 Efficient evidence optimization for θ

The hyperparameters θ = {µf , ρ, τ} that control the GP prior have a major influence on the shape
of the inferred nonlinearity, particularly in high dimensions and when data is scarce. A theoretically
attractive and computationally efficient approach for setting θ is to maximize the evidence p(θ|r, X),
also known as the marginal likelihood, a general approach known as empirical Bayes [5,14,28,32].
Here we describe a method for rapid evidence maximization that we will exploit to design an active
learning algorithm in Section 3.

The evidence can be computed by integrating the product of the likelihood and prior with respect to
f , but can also be obtained by solving for the (often neglected) denominator term in Bayes’ rule:

p(r|θ) =

∫
p(r|f)p(f |θ)df =

p(r|f)p(f |θ)
p(f |r, θ)

, (8)

where we have dropped conditioning on X for notational convenience. For the GP-Poisson model
here, this integral is not tractable analytically, but we can approximate it as follows. We begin with
a well-known Gaussian approximation to the posterior known as the Laplace approximation, which
comes from a 2nd-order Taylor expansion of the log-posterior around its maximum [28]:

p(f |r, θ) ≈ N (f |fmap,Λ), Λ−1 = H +K−1, (9)

where H = − ∂2

∂f2L(f) is the Hessian (second derivative matrix) of the negative log-likelihood
(eq. 2), evaluated at fmap, and K−1 is the inverse prior covariance (eq. 3). This approximation is
reasonable given that the posterior is guaranteed to be unimodal and log-concave. Plugging it into
the denominator in (eq. 8) gives us a formula for evaluating approximate evidence,

p(r|θ) ≈
exp

(
L(f)

)
N (f |µf ,K)

N (f |fmap,Λ)
, (10)

which we evaluate at f = fmap, since the Laplace approximation is the most accurate there [20,33].

The hyperparameters θ directly affect the prior mean and covariance (µf ,K), as well as the poste-
rior mean and covariance (fmap,Λ), all of which are essential for evaluating the evidence. Finding
fmap and Λ given θ requires numerical optimization of log p(f |r, θ), which is computationally ex-
pensive to perform for each search step in θ. To overcome this difficulty, we decompose the posterior
moments (fmap,Λ) into terms that depend on θ and terms that do not via a Gaussian approximation
to the likelihood. The logic here is that a Gaussian posterior and prior imply a likelihood function
proportional to a Gaussian, which in turn allows prior and posterior moments to be computed an-
alytically for each θ. This trick is similar to that of the EP algorithm [34]: we divide a Gaussian
component out of the Gaussian posterior and approximate the remainder as Gaussian. The resulting
moments are H = Λ−1 − K−1 for the likelihood inverse-covariance (which is the Hessian of the
log-likelihood from eq. 9), and m = H−1(Λ−1fmap − K−1µf) for the likelihood mean, which
comes from the standard formula for the product of two Gaussians.

Our algorithm for evidence optimization proceeds as follows: (1) given the current hyperparameters
θi, numerically maximize the posterior and form the Laplace approximation N (fmapi,Λi); (2)
compute the Gaussian “potential”N (mi, Hi) underlying the likelihood, given the current values of
(fmapi,Λi, θi), as described above; (3) Find θi+1 by maximizing the log-evidence, which is:

E(θ) = rT log(g(fmap))−1T g(fmap)− 1

2
log |KHi+I|−

1

2
(fmap−µf)

TK−1(fmap−µf), (11)

where fmap and Λ are updated using Hi and mi obtained in step (2), i.e. fmap = Λ(Himi +
K−1µf) and Λ = (Hi + K−1)−1. Note that this significantly expedites evidence optimization
since we do not have to numerically optimize fmap for each θ.

4

0 50 100

0

5

15

25

0 50 100
0

5

15

25

random
sampling

uncertainty
sampling

20 datapoints 100 datapoints
true posterior mean 95% confidence regionA

ra
te

 (s
pi

ke
s/

tri
al

)

10 800

10

20

random sampling
uncertainty sampling

4020 160

of datapoints

er
ro

r

B

ra
te

 (s
pi

ke
s/

tri
al

)

Figure 2: Comparison of random and optimal design in a simulated experiment with a 1D nonlinear-
ity. The true nonlinear response function g(f(x)) is in gray, the posterior mean is in black solid, 95%
confidence interval is in black dotted, stimulus is in blue dots. A (top): Random design: responses
were measured with 20 (left) and 100 (right) additional stimuli, with stimuli sampled uniformly over
the interval shown on the x axis. A (bottom): Optimal design: responses were measured with same
numbers of additional stimuli selected by uncertainty sampling (see text). B: Mean square error as
a function of the number of stimulus-response pairs. The optimal design achieved half the error rate
of the random design experiment.

3 Optimal design: uncertainty sampling

So far, we have introduced an efficient algorithm for estimating the nonlinearity f and hyperparam-
eters θ for an LNP encoding model under a GP prior. Here we introduce a method for adaptively
selecting stimuli during an experiment (often referred to as active learning or optimal experimen-
tal design) to minimize the amount of data required to estimate f [29]. The basic idea is that we
should select stimuli that maximize the expected information gained about the model parameters.
This information gain of course depends the posterior distribution over the parameters given the
data collected so far. Uncertainty sampling [31] is an algorithm that is appropriate when the model
parameters and stimulus space are in a 1-1 correspondence. It involves selecting the stimulus x
for which the posterior over parameter f(x) has highest entropy, which in the case of a Gaussian
posterior corresponds to the highest posterior variance.

Here we alter the algorithm slightly to select stimuli for which we are most uncertain about the spike
rate g(f(x)), not (as stated above) the stimuli where we are most uncertain about our underlying
function f(x). The rationale for this approach is that we are generally more interested in the neu-
ron’s spike-rate as a function of the stimulus (which involves the inverse link function g) than in
the parameters we have used to define that function. Moreover, any link function that maps R to
the positive reals R+, as required for Poisson models, we will have unavoidable uncertainty about
negative values of f , which will not be overcome by sampling small (integer) spike-count responses.
Our strategy therefore focuses on uncertainty in the expected spike-rate rather than uncertainty in f .

Our method proceeds as follows. Given the data observed up to a certain time in the experiment,
we define a grid of (evenly-spaced) points {x∗j} as candidate next stimuli. For each point, we
compute the posterior uncertainty γj about the spike rate g(f(x∗j)) using the delta method, i.e.,
γj = g′(f(x∗j))σj , where σj is the posterior standard deviaton (square root of the posterior variance)
at f(xj) and g′ is the derivative of g with respect to its argument. The stimulus selected next on trial
t+ 1, given all data observed up to time t, is selected randomly from the set:

xt+1 ∈ {x∗j | γj ≥ γi∀i}, (12)

that is, the set of all stimuli for which uncertainty γ is maximal. To find {σj} at each candidate point,
we must first update θ and fmap. After each trial, we update fmap by numerically optimizing the
posterior, then update the hyperparameters using (eq. 11), and then numerically re-compute fmap

and Λ given the new θ. The method is summarized in Algorithm 1, and runtimes are shown in Fig. 5.

5

Algorithm 1 Optimal design for nonlinearity estimation under a GP-Poisson model
1. given the current data Dt = {x1, ...,xt, r1, ..., rt}, the posterior mode fmapt, and hyper-

parameters θt, compute the posterior mean and standard deviation (f∗map,σ
∗) at a grid of

candidate stimulus locations {x∗}.
2. select the element of {x∗} for which γ∗ = g′(f∗map)σ∗ is maximal
3. present the selected xt+1 and record the neural response rt+1

4. find fmapt+1|Dt+1, θt; update θi+1 by maximizing evidence; find fmapt+1|Dt+1, θt+1

4 Simulations

We tested our method in simulation using a 1-dimensional feature space, where it is easy to visualize
the nonlinearity and the uncertainty of our estimates (Fig. 2). The stimulus space was taken to be
the range [0, 100], the true f was a sinusoid, and spike responses were simulated as Poisson with
rate g(f(x)). We compared the estimate of g(f(x)) obtained using optimal design to the estimate
obtained with “random sampling”, stimuli drawn uniformly from the stimulus range.

Fig. 2 shows the estimates of g(f(x)) after 20 and 100 trials using each method, along with the
marginal posterior standard deviation, which provides a±2 SD Bayesian confidence interval for the
estimate. The optimal design method effectively decreased the high variance in the middle (near 50)
because it drew more samples where uncertainty about the spike rate was higher (due to the fact that
variance increases with mean for Poisson neurons). The estimates using random sampling (A, top)
was not accurate because it drew more points in the tails where the variance was originally lower
than the center. We also examined the errors in each method as a function of the number of data
points. We drew each number of data points 100 times and computed the average error between
the estimate and the true g(f(x)). As shown in (B), uncertainty sampling achieved roughly half the
error rate of the random sampling after 20 datapoints.

5 Experiments

−0.6

0

0.6

co
ne

 c
on

tra
st

0 20 40 60
0

10

20

sp
ik

e
co

un
t

trial #

L
M
S

Figure 3: Raw experimental data: stimuli in 3D cone-
contrast space (above) and recorded spike counts (below)
during the first 60 experimental trials. Several (3-6) stim-
ulus staircases along different directions in color space
were randomly interleaved to avoid the effects of adap-
tation; a color direction is defined as the relative propor-
tions of L, M, and S cone contrasts, with [0 0 0] corre-
sponding to a neutral gray (zero-contrast) stimulus. In
each color direction, contrast was actively titrated with
the aim of evoking a response of 29 spikes/sec. This
sampling procedure permitted a broad survey of the stim-
ulus space, with the objective that many stimuli evoked
a statistically reliable but non-saturating response. In all,
677 stimuli in 65 color directions were presented for this
neuron.

We recorded from a V1 neuron in an awake, fixating rhesus monkey while Gabor patterns with vary-
ing color and contrast were presented at the receptive field. Orientation and spatial frequency of the
Gabor were fixed at preferred values for the neuron and drifted at 3 Hz for 667 ms each. Contrast
was varied using multiple interleaved staircases along different axes in color space, and spikes were
counted during a 557ms window beginning 100ms after stimulus appeared. The staircase design
was used because the experiments were carried out prior to formulating the optimal design methods
described in this paper. However, we will analyze them here for a “simulated optimal design exper-
iment”, where we choose stimuli sequentially from the list of stimuli that were actually presented
during the experiment, in an order determined by our information-theoretic criterion. See Fig. 3
caption for more details of the experimental recording.

6

random sampling uncertainty sampling

L

S cone contrast

M cone contrast

L cone contrast

A B

posterior
mean

random
sampling

95% conf.
interval

uncertainty
sampling

150 datapoints

150 datapoints

all data

0.60.30

0.60.30

0.40.20

30

15

0

sp
ik

e
ra

te

M
0.60- 0.6

0.6

0

- 0.6

L

0.6

0

- 0.6
0.40- 0.4

M

0.6

0

- 0.6
0.40- 0.4

0.60- 0.6 0.60- 0.6

S
0.40- 0.4 0.40- 0.4

S
0.40- 0.4 0.40- 0.4

sp
ik

e
ra

te
sp

ik
e

ra
te

all data

30

15

0

30

15

0

Figure 4: One and two-dimensional conditional “slices” through the 3D nonlinearity of a V1 simple
cell in cone contrast space. A: 1D conditionals showing spike rate as a function of L, M, and S
cone contrast, respectively, with other cone contrasts fixed to zero. Traces show the posterior mean
and ±2SD credible interval given all datapoints (solid and dotted gray), and the posterior mean
given only 150 data points selected randomly (black) or by optimal design (red), carried out by
drawing a subset of the data points actually collected during the experiment. Note that even with
only 1/4 of data, the optimal design estimate is nearly identical to the estimate obtained from all 677
datapoints. B: 2D conditionals on M and L (first row), S and L (second row), M and S (third row)
cones, respectively, with the other cone contrast set to zero. 2D conditionals using optimal design
sampling (middle column) with 150 data points are much closer to the 2D conditionals using all data
(right column) than those from a random sub-sampling of 150 points (left column).

We first used the entire dataset (677 stimulus-response pairs) to find the posterior maximum fmap,
with hyperparameters set by maximizing evidence (sequential optimization of fmap and θ (eq. 11)
until convergence). Fig. 4 shows 1D and 2D conditional slices through the estimated 3D nonlinearity
g(f(x)), with contour plots constructed using the MAP estimate of f on a fine grid of points. The
contours for a neuron with linear summation of cone contrasts followed by an output nonlinearity
(i.e., as assumed by the standard model of V1 simple cells) would consist of straight lines. The
curvature observed in contour plots (Fig. 4B) indicates that cone contrasts are summed together in a
highly nonlinear fashion, especially for L and M cones (top).

We then performed a simulated optimal design experiment by selecting from the 677 stimulus-
response pairs collected during the experiment, and re-ordering them greedily according to the
uncertainty sampling algorithm described above. We compared the estimate obtained using only
1/4 of the data (150 points) with an estimate obtained if we had randomly sub-sampled 150 data
points from the dataset (Fig. 4). Using only 150 data points, the conditionals of the estimate using
uncertainty sampling were almost identical to those using all data (677 points).

Although our software implementation of the optimal design method was crude (using Matlab’s
fminunc twice to find fmap and fmincon once to optimize the hyperparameters during each
inter-trial interval), the speed was more than adequate for the experimental data collected (Fig. 5,
A) using a machine with an Intel 3.33GHz XEON processor. The largest bottleneck by far was
computing the eigendecomposition of K for each search step for θ. We will discuss briefly how to
improve the speed of our algorithm in the Discussion.

Lastly, we added a recursive filter h to the model (Fig. 1), to incorporate the effects of spike history
on the neuron’s response, allowing us to account for the possible effects of adaptation on the spike
counts obtained. We computed the maximum a posteriori (MAP) estimate for h under a temporal

7

50 100 150 200 250 300
2

4

6

8

10

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8
random
sampling
uncertainty
sampling

A

of datapoints

M
SE

of datapoints

ru
n

tim
e

(in
 s

ec
on

ds
)

B

0 25 50
−5

0

5

x 10
−4C

es
tim

at
ed

hi

st
or

y
fil

te
r

time before spike (s)

Figure 5: Comparison of run time and error of optimal design method using simulated experiments
by resampling experimental data. A: The run time for uncertainty sampling (including the posterior
update and the evidence optimization) as a function of the number of data points observed. (The grid
of “candidate” stimuli {x∗} was the subset of stimuli in the experimental dataset not yet selected,
but the speed was not noticeably affected by scaling to much larger sets of candidate stimuli). The
black dotted line shows the mean intertrial interval of 677ms. B: The mean squared error between
the estimate obtained using each sampling method and that obtained using the full dataset. Note
that the error of uncertainty sampling with 150 points is even lower than that from random sampling
with 300 data points. C: Estimated response-history filter h, which describes how recent spiking
influences the neuron’s spike rate. This neuron shows self-excitatory influence on the time-scale of
25s, with self-suppression on a longer scale of approximately 1m.

smoothing prior (Fig. 5). It shows that the neuron’s response has a mild dependence on its recent
spike-history, with a self-exciting effect of spikes within the last 25s. We evaluated the performance
of the augmented model by holding out a random 10% of the data for cross-validation. Prediction
performance on test data was more accurate by an average of 0.2 spikes per trial in predicted spike
count, a 4 percent reduction in cross-validation error compared to the original model.

6 Discussion

We have developed an algorithm for optimal experimental design, which allows the nonlinearity in
a cascade neural encoding model to be characterized quickly and accurately from limited data. The
method relies on a fast method for updating the hyperparameters using a Gaussian factorization of
the Laplace approximation to the posterior, which removes the need to numerically recompute the
MAP estimate as we optimize the hyperparameters. We described a method for optimal experimen-
tal design, based on uncertainty sampling, to reduce the number of stimuli required to estimate such
response functions. We applied our method to the nonlinear color-tuning properties of macaque
V1 neurons and showed that the GP-Poisson model provides a flexible, tractable model for these
responses, and that optimal design can substantially reduce the number of stimuli required to char-
acterize them. One additional virtue of the GP-Poisson model is that conditionals and marginals
of the high-dimensional nonlinearity are straightforward, making it easy to visualize their lower-
dimensional slices and projections (as we have done in Fig. 4). We added a history term to the LNP
model in order to incorporate the effects of recent spike history on the spike rate (Fig. 5), which
provided a very slight improvement in prediction accuracy. We expect that the ability to incorpo-
rate dependencies on spike history to be important for the success of optimal design experiments,
especially with neurons that exhibit strong spike-rate adaptation [30].

One potential criticism of our approach is that uncertainty sampling in unbounded spaces is known
to “run away from the data”, repeatedly selecting stimuli that are far from previous measurements.
We wish to point out that in neural applications, the stimulus space is always bounded (e.g., by the
gamut of the monitor), and in our case, stimuli at the corners of the space are actually helpful for
initializing estimates the range and smoothness of the function.

In future work, we will work to improve the speed of the algorithm for use in real-time neurophysiol-
ogy experiments, using analytic first and second derivatives for evidence optimization and exploring
approximate methods for sparse GP inference [35]. We will examine kernel functions with a more
tractable matrix inverse [20], and test other information-theoretic data selection criteria for response
function estimation [36].

8

References
[1] E. P. Simoncelli, J. W. Pillow, L. Paninski, and O. Schwartz. The Cognitive Neurosciences, III, chapter 23,

pages 327–338. MIT Press, Cambridge, MA, October 2004.

[2] R.R. de Ruyter van Steveninck and W. Bialek. Proc. R. Soc. Lond. B, 234:379–414, 1988.

[3] E. J. Chichilnisky. Network: Computation in Neural Systems, 12:199–213, 2001.

[4] F. Theunissen, S. David, N. Singh, A. Hsu, W. Vinje, and J. Gallant. Network: Computation in Neural
Systems, 12:289–316, 2001.

[5] M. Sahani and J. Linden. NIPS, 15, 2003.

[6] L. Paninski. Network: Computation in Neural Systems, 15:243–262, 2004.

[7] Tatyana Sharpee, Nicole C Rust, and William Bialek. Neural Comput, 16(2):223–250, Feb 2004.

[8] O. Schwartz, J. W. Pillow, N. C. Rust, and E. P. Simoncelli. Journal of Vision, 6(4):484–507, 7 2006.

[9] J. W. Pillow and E. P. Simoncelli. Journal of Vision, 6(4):414–428, 4 2006.

[10] Misha B Ahrens, Jennifer F Linden, and Maneesh Sahani. J Neurosci, 28(8):1929–1942, Feb 2008.

[11] Nicole C Rust, Odelia Schwartz, J. Anthony Movshon, and Eero P Simoncelli. Neuron, 46(6):945–956,
Jun 2005.

[12] I. DiMatteo, C. Genovese, and R. Kass. Biometrika, 88:1055–1073, 2001.

[13] S.F. Martins, L.A. Sousa, and J.C. Martins. Image Processing, 2007. ICIP 2007. IEEE International
Conference on, volume 3, pages III–309. IEEE, 2007.

[14] Carl Rasmussen and Chris Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

[15] Liam Paninski, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad, Michael
Vidne, Joshua Vogelstein, and Wei Wu. J Comput Neurosci, Aug 2009.

[16] Jarno Vanhatalo, Ville Pietiläinen, and Aki Vehtari. Statistics in medicine, 29(15):1580–1607, July 2010.

[17] E. Brown, L. Frank, D. Tang, M. Quirk, and M. Wilson. Journal of Neuroscience, 18:7411–7425, 1998.

[18] W. Wu, Y. Gao, E. Bienenstock, J.P. Donoghue, and M.J. Black. Neural Computation, 18(1):80–118,
2006.

[19] Y. Ahmadian, J. W. Pillow, and L. Paninski. Neural Comput, 23(1):46–96, Jan 2011.

[20] K.R. Rad and L. Paninski. Network: Computation in Neural Systems, 21(3-4):142–168, 2010.

[21] Jakob H Macke, Sebastian Gerwinn, Leonard E White, Matthias Kaschube, and Matthias Bethge. Neu-
roimage, 56(2):570–581, May 2011.

[22] John P. Cunningham, Krishna V. Shenoy, and Maneesh Sahani. Proceedings of the 25th international
conference on Machine learning, ICML ’08, pages 192–199, New York, NY, USA, 2008. ACM.

[23] R.P. Adams, I. Murray, and D.J.C. MacKay. Proceedings of the 26th Annual International Conference on
Machine Learning. ACM New York, NY, USA, 2009.

[24] Todd P. Coleman and Sridevi S. Sarma. Neural Computation, 22(8):2002–2030, 2010.

[25] J. E. Kulkarni and L Paninski. Network: Computation in Neural Systems, 18(4):375–407, 2007.

[26] A.C. Smith and E.N. Brown. Neural Computation, 15(5):965–991, 2003.

[27] B.M. Yu, J.P. Cunningham, G. Santhanam, S.I. Ryu, K.V. Shenoy, and M. Sahani. Journal of Neurophys-
iology, 102(1):614, 2009.

[28] C.M. Bishop. Pattern recognition and machine learning. Springer New York:, 2006.

[29] D. Mackay. Neural Computation, 4:589–603, 1992.

[30] J. Lewi, R. Butera, and L. Paninski. Neural Computation, 21(3):619–687, 2009.

[31] David D. Lewis and William A. Gale. Proceedings of the ACM SIGIR conference on Research and
Development in Information Retrieval, pages 3–12. Springer-Verlag, 1994.

[32] G. Casella. American Statistician, pages 83–87, 1985.

[33] J. W. Pillow, Y. Ahmadian, and L. Paninski. Neural Comput, 23(1):1–45, Jan 2011.

[34] T. P. Minka. UAI ’01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pages
362–369, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[35] E. Snelson and Z. Ghahramani. Advances in neural information processing systems, 18:1257, 2006.

[36] Andreas Krause, Ajit Singh, and Carlos Guestrin. J. Mach. Learn. Res., 9:235–284, June 2008.

9

