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1. Neural characterization problem
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Goal: characterize the receptive field (RF) using neural responses
to white noise or naturalistic stimuli

Problem: standard estimators are noisy, require lots of data
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2. Empirical Bayes (EB)

» Use a prior to regularize RF estimate
» Set hyper-parameters governing that prior by maximum likelihood
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2-stage estimation procedure

1. Set 6 by maximizing the “evidence”

0 = arg max P(y|X, 6)

likelihood
p(ylz, k)

arg max log P(y!X, k) + log P(k|0)

Gaussian case: zero-mean Gaussian prior + Gaussian likelihood
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3. Prior methods (using empirical Bayes)

(A) ridge regression
- Gaussian prior over weights with a common variance
- standard reqgularization technique: “L2 shrinkage”
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(B) automatic relevance determination (ARD) (Tiping, 2001)

» Gaussian prior with different variance for each weight
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(C) automatic smoothness determination (ASD)

- Gaussian prior with distance-dependent correlation (Sahani & Linden,

2002
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4. Observation

macaque V1 receptive field

(Rust et
aI 2005)

space-time frequency

RFs tend to be localized in space-time
and spatio-temporal frequency
(not just sparse or smooth)

idea: design a prior covariance matrix
to capture this structure

5. Automatic Locality Determination (ALD)

(A) spacetime-localized prior (ALDs)
» diagonal prior with location-dependent variance
- allows large weights only within some space-time region
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(B) frequency-localized prior (ALDf)

» diagonal prior in Fourier basis with frequency-dependent variance
- allow large weights only within some region of Fourier space
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(C) spacetime & frequency-localized prior (ALDsf)

» “sandwich” together ALDs and ALDf prior covariance matrices
» weights localized in spacetime and frequency
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* RF estimates are sparse in both bases
» tend to be smooth

 novel priors capture localized structure of neural RFs
» automatic setting of hyper-params by empirical Bayes
* more accurate RF estimates from less data
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6. Simulations
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8. Extension: fully Bayesian inference and error bars

» Empirical Bayes fails to take account of uncertainty

simulated 1-D example

samples

In hyper-parameters dita 95 % credible intervals 100
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2. For each #* sample k™ ~ P(k|D, 0") 0
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