
Empirical Bayes Methods for Sparse, Smooth, Localized Receptive Field Estimation 

Goal: characterize the receptive field (RF) using neural responses
          to white noise or naturalistic stimuli
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(C) automatic smoothness determination (ASD)

(B) frequency-localized prior (ALDf)ML true k

Conclusions Acknowledgements
• novel priors capture localized structure of neural RFs
• automatic setting of hyper-params by empirical Bayes
• more accurate RF estimates from less data

• Gaussian prior over weights with a common variance
• standard regularization technique: “L2 shrinkage”

• Gaussian prior with distance-dependent correlation
• produces smooth k

1. Neural characterization problem 

(C) spacetime & frequency-localized prior (ALDsf)

Fourier basis matrix

• “sandwich” together ALDs and ALDf prior covariance matrices
• weights localized in spacetime and frequency

• RF estimates are sparse in both bases
• tend to be smooth

6. Simulations 7. V1 simple cell data
ML ridge ALDsftrue filter ARD ASD
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data: Rust et al Neuron 2005
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2. MAP estimate for     :

1. Set      by maximizing the “evidence”

2. Empirical Bayes (EB) 

3. Prior methods (using empirical Bayes) 5. Automatic Locality Determination (ALD)

4. Observation
RFs tend to be localized in space-time 
and spatio-temporal frequency
(not just sparse or smooth)

macaque V1 receptive field

space-time frequency

(Rust et 
al., 2005)

(A) spacetime-localized prior (ALDs)
• diagonal prior with location-dependent variance
• allows large weights only within some space-time region

idea: design a prior covariance matrix 
to capture this structure

ALDs true 

ALDf true 

ALDsf true 

8. Extension: fully Bayesian inference and error bars
• Empirical Bayes fails to take account of uncertainty
  in hyper-parameters 

But:

1. Sample                                          
    

{evidence

2. For each     , sample 

100
samples

95 % credible intervals

V1 simple cell data

Problem: standard estimators are noisy, require lots of data  

 simulated example:

• Use a prior to regularize RF estimate
• Set hyper-parameters governing that prior by maximum likelihood 

generative model 2-stage estimation procedure

Algorithm for sampling from true posterior
(Markov Chain Monte Carlo)

posterior variance cross-validation error
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• diagonal prior in Fourier basis with frequency-dependent variance
• allow large weights only within some region of Fourier space
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(B) automatic relevance determination (ARD)  (Tipping, 2001)

• Gaussian prior with different variance for each weight
• produces sparse k
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zero-mean Gaussian prior + Gaussian likelihood
          evidence is easy to compute!

Gaussian case:

centerscale extent

centerscale extent
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simulated 1-D example

by Metropolis Hastings                                 
    


